

OVERVIEW OF PROGRESS

Harilaos N. Psaraftis George Panagakos

The SuperGreen project

Project full title: Supporting EU's Freight Transport Logistics

Action Plan on Green Corridors Issues

Type of project: Coordination and Support Action

Financed through: 7th Framework Programme

Duration: 3 years

Official start: 15 Jan. 2010

Consortium: 22 partners from 13 countries

Leader: National Technical University of Athens

Total budget: 3,453,747 EUR

• EC contribution: 2,634,698 EUP

Project objectives

- Give overall support and recommendations on green corridors to EU's Freight Transport Logistics Action Plan
- Encourage co-modality for sustainable solutions
- Benchmark green corridors based on selected KPIs covering all aspects of transport operations and infrastructure (emissions, internal and external costs)
- Conduct a programme of networking activities between stakeholders (public and private)
- Deliver policy recommendations at a European level for the further development of green corridors
- Provide recommendations concerning new calls for R&D proposals to support development of green corridors

What is a green corridor?

EU Commission:

Green Corridors are a European concept denoting long-distance freight transport corridors where advanced technology and co-modality are used to achieve energy efficiency and reduce environmental impact

What is a green corridor?

Swedish Ministry of Transport:

A green transport corridor is characterised by:

- Sustainable logistic solutions
- Integrated logistic concepts with utilisation of co-modality
- A harmonised system of rules
- National/international goods traffic on long transport stretches
- Effective and strategically placed transhipment points and infrastructure
- A platform for development and demonstration of innovative logistic solutions

SuperGreen work package structure

SuperGreen Corridors

BRIEF DESCRIPTION- BRANCHES	NICKNAME
Malmö-Trelleborg-Rostock/Sassnitz- Berlin-Munich-Salzburg-Verona-Bologna-Naples-Messina-Palermo Branch A: Salzburg-Villach-Trieste (Tauern axis) Branch B: Bologna-Ancona/Bari/Brindisi-Igoumenitsa/Patras-Athens	Brenner
Madrid-Gijon-Saint Nazaire-Paris Branch A: Madrid-Lisboa	Finis Terrae
Cork-Dublin-Belfast-Stranraer Branch A: Munich-Friedewald-Nuneaton Branch B: West Coast Main line	Cloverleaf
Helsinki-Turku-Stockholm-Oslo-Göteborg-Malmö-Copenhagen (Nordic triangle including the Oresund fixed link)- Fehmarnbelt - Milan - Genoa	Edelweiss
Motorway of Baltic sea Branch: St. Petersburg-Moscow-Minsk-Klapeida .	Nureyeev
Rhine/Meuse-Main-Danube inland waterway axis Branch A: Betuwe line Branch B: Frankfurt-Paris	Strauss
Igoumenitsa/Patras-Athens-Sofia-Budapest-Vienna- Prague-Nurnberg/Dresden-Hamburg	Two Seas
Odessa-Constanta-Bourgas-Istanbul-Piraeus-Gioia Tauro-Cagliari-La Spezia-Marseille-Barcelona- Valencia-Sines Branch A: Algeciras-Valencia-Barcelona-Marseille-Lyon Branch B: Piraeus-Trieste	Mare Nostrum
Shanghai-Le Havre/Rotterdam-Hamburg/Göteborg-Gdansk-Baltic ports-Russia Branch:Xiangtang-Beijing-Mongolia-Russia-Belarus-Poland-Hamburg	Silk Way

SuperGreen Corridors

SuperGreen Corridors

TEN-T Core network corridors (2011) vs SuperGreen corridors (2010)

10

10

TEN-T core network in metro format

The initial set of KPIs

Efficiency Absolute cost €/tonne

Relative cost €/ton-km

Service quality Transport time hours

Reliability (time precision) % of shipments on time

Frequency of service number per week

ICT applications scale 1-5

Cargo security incidents/shipments
Cargo safety incidents/shipments

Environmental CO₂-eq g/ton-km

sustainability SOx g/1000 ton-km

NOx g/1000 ton-km

 PM_{10} g/1000 ton-km

Infrastructural Congestion average delay/ton-km

sufficiency Bottlenecks scale 1-5

Social issues Land use (urban & sensitive areas) % of buffer zone

Traffic safety fatal. & ser.injur./mio ton-km

Noise % of length >50/55 dB

The most important KPIs

Relative transport cost (to the user) €/ton-km

Transport time hours

Reliability (on-time delivery) % of shipments

Frequency of service number per year

CO₂-eq emissions g/ton-km

SOx emissions g/ton-km

Various workshops for external consultation

Results of the Brenner corridor (pilot)

0.09 0.05 - 41 19 -		
41 19 -	-40 44 – 98	3 23
99 50 -	- 99 50 - 10	00 100
624 104 -	-2600 208 - 57	72 52
42.11 46.51-	-71.86 9.49 - 17	7.61 16.99
0.14 0.05 -	-0.08 0.04-0.	09 0.12
	624 104 - 42.11 46.51 -	624 104 – 2600 208 – 57 42.11 46.51 – 71.86 9.49 – 17

- Wide range of values due to different characteristics of the segments comprising the corridor
- Low speed of road transport signifies delays in terminals

Benchmarking results (all corridors)

Corridor	Mode	Cost (€/tkm)	Av. speed (km/h)	Reliability (%)	Frequency (no/year)	CO ₂ (g/tkm)	SOx (g/tkm)
Brenner	Intermodal	0.03-0.09	9-41	95-99	26-624	10.62-42.11	0.02-0.14
	Road	0.05-0.07	19-40	50-99	104-2.600	46.51-71.86	0.05-0.08
	Rail	0.05-0.80	44-98	50-100	208-572	9.49-17.61	0.04-0.09
	SSS	0.04	23	100	52	16.99	0.12
Cloverleaf	Road	0.06	40-60	80-90	4.680	68.81	0.09
	Rail	0.05-0.09	45-65	90-98	156-364	13.14-18.46	0.01-0.02
Nureyev	Intermodal	0.10-0.18	13-42	80-90	156-360	13.43-33.36	0.03-0.15
-	SSS	0.05-0.06	15-28	90-99	52-360	5.65-15.60	0.07-0.14
Strauss	IWT	0.02-0.44	-	-	-	9.86-22.80	0.01-0.03
Mare Nostrum	SSS	0.003-0.20	17	90-95	52-416	6.44-27.26	0.09-0.40
	DSS	-	-	_	-	15.22	0.22
Silk Way	Rail	0.05	26	_	_	41.00	_
-	DSS	0.004	20-23	-	-	12.50	-

The EcoTransIT World web-based calculator was used for estimating emissions

Benchmarking of green technologies

- A total of 138
 innovative
 technologies have
 been analyzed to
 identify the most
 promising in terms of
 greening potential.
- They have been grouped in 6 categories ranging from 'very important' to 'irrelevant'.

1/

17

Benchmarking of green technologies ii

18

- 40 technologies (~30%)
 belong to the first two categories 'very important' and 'important'.
- Considering the transport mode, the total number of applications grows up to 57.

TransBaltic conference 2012

The 7 ICT "clusters"

- 1. EXPERT CHARGING SYSTEMS
- 2. CENTRALIZED TRANSPORT MANAGEMENT SYSTEMS
- 3. DECENTRALIZED TRANSPORT MANAGEMENT SYSTEMS
- 4. BROADCASTING, MONITORING AND COMMUNICATION SYSTEMS
- 5. SAFETY SYSTEMS
- 6. E-ADMINISTRATIVE SYSTEMS
- 7. EMISSIONS FOOTPRINT CALCULATOR SYSTEMS

Benchmarking of ICTs

Set of KPIs

КРІ	Unit
CO2 emissions	g/ton-km
SOx emissions	g/1000 ton-km
Relative transport cost	€/ton-km
Transport time	h
Frequency, services per year	number
Reliability, on time deliveries	%

List of ICT Technologies: 7 ICT clusters 13 ICT systems

List of corridors: All 9 corridors

Number of corridor/mode/ICT scenarios: 15

ICTs per mode and per corridor: 15 "scenarios"

	Corridor	Transportation Modes	ICT Cluster (Application)	
1	Mare Nostrum	SCM	Broadcasting, monitoring & communication systems (SMARTBOX)	
2	Brenner	Road Rail	Expert charging systems (congestion charging) Centralised transportation management systems (ERTMS)	
3	Two Seas	Maritime	Broadcasting, monitoring & Communication systems (Broadband communication: WiFi/WiMAX, digital VHF, GNSS: GPS, Glonass, Galileo)	
4	Silk Way	Maritime Rail	Emissions footprint calculator systems (emissions sensors) Centralised transportation management systems (ERTMS)	
5	Edelweiss	Road	Emissions footprint calculator systems (Speed limits on the highway depending on CO2 emission values)	
6	Finis Terrae	Maritime Rail	E-Administrative Systems (JUP) Centralised transportation management systems,(ERTMS)	
7	Strauss	Inland waterways	Centralised transportation management systems (RIS) Expert charging systems (river tolls)	
8	Nureyev	Maritime	E-Administrative Systems (fretis) Centralised transportation management systems (assign icebreakers to ships)	
9	Cloverleaf	Road	Decentralised transportation management systems (platooning), Safety systems (adaptive speed control)	

21

Plans ahead

- Finalize benchmarking of green technologies and ICTs
- Finalize remommendations for further R&D
- Finalize policy recommendations
- Disseminate!

BE SURE NOT TO MISS!

SuperGreen final event

Jan. 11, 2013

Gothenburg, Sweden

Thank you for your attention

www.supergreenproject.eu

